SUSY at LHC now and future

Mihoko Nojiri KEK& IPMU

FermiLab 9/29

SUSY after LHC

Checking current excess (ATLAS 1I+ missing +jets)

Han, Nojiri, Takeuchi, Yanagida (arXiv tomorrow...)

- ❖ Future: various direction...
 - ex: application of quark gluon separation to get max sensitivity

Bhattacherjee, Mukhopadhyay, Nojiri, **Sakaki**, Webber arXiv Today 1609.08781

SUSY at LHC Now

current excess (stop channel)

ATLAS 11 + missing + jets

Signal region	SR1	tN _high	bC2x_diag	bC2x_med	bCbv	DM_low	DM_high
(n_j,n_b)	$(\geq 4, \geq 1)$	$(\geq 4, \geq 1)$	$(\geq 4, \geq 2)$	$(\geq 4, \geq 2)$	$(\geq 2, =0)$	$(\geq 4, \geq 1)$	$(\geq 4, \geq 1)$
$ \not\!\!E_T \; [{\rm GeV}] $	260	450	230	210	360	300	330
$m_T \; [{ m GeV}]$	170	210	170	140	200	120	220
$am_{T2} [{\rm GeV}]$	175	175	170	210	-	140	170
Total background	24 ± 3	3.8 ± 0.8	22 ± 3	13 ± 2	7.8 ± 1.8	17 ± 2	15 ± 2
Observed	37	5	37	14	7	35	21
$p_0(\sigma)$	0.012(2.2)	0.26(0.6)	0.004(2.6)	0.40(0.3)	0.50(0)	0.0004(3.3)	0.09(1.3)
$N_{\rm obs.}^{\rm limit}(95\% \ {\rm CL})$	26.0	7.2	27.5	9.9	7.2	28.3	15.6

TABLE I: Summary of some of the selection cuts and the results of the seven signal regions defined in ATLAS stop $\ell + jets + E_T^{miss} \text{ channel.}$

excess in various channel though all correlated (stop?)

Some distribution

- Assume top partner decay into LPS and top
- Not happy because it is analyzed by simplified model (Kinematics are taken care of, but assume 100% branching ratio to draw contours)

Why simplified model do not capturing the case

Han, Nojiri, Takeuchi, Yanagida (arXiv tomorrow or next week)

stop_R→Bino LSP case is almost exclude by CMS boosted top search :-(

marginal possibility in degenerate region

How about light Higgsino? even worse?:-(CMS PAS SUS-16-029

SR 40,41 2 b jet ETmiss and b is not consistent with t Nj=5~7, not boosted top and W, ETmiss> 450

Note: channels more than expected and channels less than expected tend to overlap

more complicated decay pattern

Need to

- 1. Reduce branch into stop to t chi
- 2. Keep lepton branch
- stop(right handed) → higgsino → bino W.
- *dark matter search constraint from Higgsino Bino mixing
- *Dark matter density can be adjusted by bin-slepton co-annihiliation

distribution is not sexy but OK

bottom line: We need to wait

SUSY at LHC Future

BSM search in Future

- High Luminosity is possible but No large energy increase for a moment.
- ❖ Significance is expressed at $S/\sqrt{(B + (\delta B)^2)}$ where δB is systematical error of the background
 - Clean channel extend with luminosity. → Theoretical error will reduce drastically at NNLO
 - New method which can reduce background might also be useful.

Figure 2. Reach of monojet searches.

Cirelli et al '14

I am going to talk about application of quark/gluon separation

What we may expect ex: gluino→ qq X

- quark and gluon initiated jet are different: In parton shower, quark split into hard quark and soft gluon and gluon split into two gluon more equally.
- ◆ ME level pp-> gluino gluino-> 4q +missing: background Z+jets more gluons.

Process	$f_q^{j_1}$	$f_q^{j_2}$	$f_q^{j_3}$	$f_q^{j_4}$
$\tilde{g}\tilde{g}$ +jets	0.92	0.87	0.77	0.64
Z+jets	0.64	0.55	0.27	0.16

contamination of ISR especially compressed spectrum

background also contains quark especially for the first jet.

(Mgluino, Mchi) =(1750 GeV,750GeV) Meff> 1.8TeV (we have checked Matrix level ISR

generation is not necessary for this level of compressed spectrum

experimental data

- *recent experimental study in data driven approach.
- Y j or Z j: jet is more likely to be quark
- 2j event: Low pt: dominated by gluon jet, High pt quark and gluon jet

Discriminant (BDT score)

What is discriminant

re-sum needed

$$C_{\beta} = \frac{\sum_{i,j \in \text{jet}} E_{T,i} E_{T,j} (\Delta R_{i,j})^{\beta}}{\left(\sum_{i \in \text{jet}} E_{T,i}\right)^{2}}$$

$$w_{\text{calo}} = \frac{\sum_{\text{const} \in \text{jet}} p_{\text{T,const}} \Delta R_{\text{const,jet}}}{\sum_{\text{const} \in \text{jet}} p_{\text{T,const}}}$$

soft physics

$$n_{\mathrm{trk}} = \sum_{\mathrm{trk} \in \mathrm{jet}}$$

experimentally different

ROC

build a function which gives 0.18 gluon jet ~0 an quark~1

This function depend on method you use to build the function

Fraction of quark gluon jet in MC

distribution of basic parameter (Pythia8 and Herwig++) compared with dat

Figure 5: Means of extracted templates for w_{trk} (left) and w_{calo} (right) comparing data (solid line), PYTHIA (dotted line) and Herwig++ (dashed line). The top plots show the distribution for $|\eta| < 0.8$, the bottom plots are for $1.2 < |\eta| < 2.1$. The bottom panel of each plot shows the ratio of the PYTHIA and Herwig++ distributions to the extracted templates. The last p_{T} bin in all plots includes overflow events.

consistency among the sample (note agreement of av is not enough)

Figure 7: Comparison between the means of discriminating variables as a function of $p_{\rm T}$. Templates were extracted using dijet and Z+jet samples in 25 GeV< $p_{\rm T}$ < 40 GeV, all three samples in 40 GeV< $p_{\rm T}$ < 90 GeV and dijet and γ +jet samples for $p_{\rm T}$ > 90 GeV. The leading jet has $|\eta|$ < 0.8 (left) or 1.2 < $|\eta|$ < 2.1 (right). The last $p_{\rm T}$ bin in all plots includes overflow events.

Figure 3: Data-MC comparison for the quark-gluon discriminant in Z+jets (top) and dijet (bottom) events for jets in the central region ($40 < p_T < 50$ GeV to the left, $80 < p_T < 100$ GeV in the center) and in the forward region with $40 < p_T < 50$ GeV (right). The data (black markers) are compared to the MADGRAPH/PYTHIA simulation, on which the different components are shown: quarks (blue), gluon (red) and unmatched/pileup (grey).

Checking if this is useful for BSM (gluino search)

Bhattacherjee, Mukhopadhyay, Nojiri, Sakaki, Webber

Z+q and Z+g (instead of di-jet) Delphes3

pT dependent profile of C1, mj/pT, nch)

ROOT, TMVA(BDT)

B(C1, mj/pt,nch, pT)

Delphes3 & B

TMVA with ETmiss, Meff pT,B up to 4th jet (4th jet is PS)

2 gluino -> 4j +missing Z+3j (not Z+4j matched)

scale Z+3j to reproduce 13TeV total background (Z+jets, W+jets, tt)

use ROC to find bast $S/sqrt(B+(delB)^2)$

ROC curve(gluino 2TeV LSP 1TeV)

Gain by quark gluon separation: No new kinematical cut (no new systematics by reducing phase space out) factor 3 gain over background

Fig. 2 10^{4} 1000 10 0.4 0.8 0.2 0.6 ϵ_{S} $\frac{T}{\sqrt{H_T}} > 10 \text{ GeV}^{1/2}$

list of discriminant

 $\overline{1.0}$ ---- m_{eff}

using (pT3, B3) and (pT4, B4) give about same results using pT_i (i=1,4)

•
$$\frac{E_T^{miss}}{\sqrt{H_T}} > 10 \text{ GeV}^{1/2} \& m_{eff} > 3.4 \text{ TeV}$$

 $\frac{E_T^{\text{miss}}}{\sqrt{H_T}} > 10 \text{ GeV}^{1/2} \text{ & m}_{\text{eff}} > 3.0 \text{ TeV}$

 $\frac{E_{\rm T}^{\rm miss}}{\sqrt{H_{\rm T}}} > 10 \; {\rm GeV^{1/2}} \; \; \& \; \; m_{\rm eff} > 2.5 \; {\rm TeV}$

consistent with cut based results

generator dependence + statistics

contour of max_{BDT} $(S/\sqrt{(B+(\Sigma\delta B)^2)}) = 2$

Systematics added namely we use 30%

 $m_{\tilde{g}}$ [GeV]

conclusion

- Current excess: Just wait
- For future: we need systematic control NNLO, jet substructure (boost object, quark gluon separation)

Backups

Meff Cut

We apply different Meff cut for each parameter region